首页> 外文OA文献 >Deterministic global optimization using space-filling curves and multiple estimates of Lipschitz and Holder constants
【2h】

Deterministic global optimization using space-filling curves and multiple estimates of Lipschitz and Holder constants

机译:使用空间填充曲线以及Lipschitz和Holder常数的多个估计进行确定性全局优化

代理获取
本网站仅为用户提供外文OA文献查询和代理获取服务,本网站没有原文。下单后我们将采用程序或人工为您竭诚获取高质量的原文,但由于OA文献来源多样且变更频繁,仍可能出现获取不到、文献不完整或与标题不符等情况,如果获取不到我们将提供退款服务。请知悉。

摘要

In this paper, the global optimization problem min F(y) in S with S being a hyperinterval in\udR^N and F(y) satisfying the Lipschitz condition with an unknown Lipschitz constant is considered. It is supposed that the function F(y) can be multiextremal, non-differentiable, and\udgiven as a ‘black-box’. To attack the problem, a new global optimization algorithm based on the following two ideas is proposed and studied both theoretically and numerically. First,\udthe new algorithm uses numerical approximations to space-filling curves to reduce the original Lipschitz multi-dimensional problem to a univariate one satisfying the Hölder condition. Second, the algorithm at each iteration applies a new geometric technique working\udwith a number of possible Hölder constants chosen from a set of values varying from zero to infinity showing so that ideas introduced in a popular DIRECT method can be used in the Hölder global optimization. Convergence conditions of the resulting deterministic global\udoptimization method are established. Numerical experiments carried out on several hundreds of test functions show quite a promising performance of the new algorithm in\udcomparison with its direct competitors.
机译:在本文中,考虑了S为S的全局最优问题min F(y),其中S为in \ udR ^ N的超间隔,并且满足Lipschitz条件且未知Lipschitz常数的F(y)。假定函数F(y)可以是多重极值,不可微的并且\被认为是“黑匣子”。为了解决这个问题,提出了一种基于以下两个思想的全局优化算法,并在理论和数值上进行了研究。首先,新算法使用数值逼近来填充曲线,以将原始的Lipschitz多维问题简化为满足Hölder条件的单变量问题。其次,算法在每次迭代时都会应用一种新的几何技术,其中包括从从零到无穷大的一组值中选择的许多可能的Hölder常数,从而可以将流行的DIRECT方法中引入的思想用于Hölder全局优化中。 。建立了确定性全局\非优化方法的收敛条件。在数百个测试函数上进行的数值实验表明,与直接竞争者相比,新算法的性能很有希望。

著录项

  • 作者

    Lera D; Sergeyev Ya D;

  • 作者单位
  • 年度 2015
  • 总页数
  • 原文格式 PDF
  • 正文语种 eng
  • 中图分类

相似文献

  • 外文文献
  • 中文文献
  • 专利
代理获取

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号